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a THF solution of 3 is treated with 2 equiv of HCl/ether at 
-78 0C, the product obtained by ether extraction shows a 
two-line i>(CO) pattern at 1990 and 1895 cm -1. This species 
may be the dienol analogue of complex 2, although further 
characterization is needed. Such a complex would not possess 
a direct, formal carbon analogue. 

The preparation and complexation of the dianion 3 and its 
derivatives and the synthesis of the neutral, dienol complexes 
are being pursued actively. 
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Cobalt(II) Induced Amine Deprotonation in Aqueous 
Solution in the Near Basic pH Range 

Sir: 

There are three major types of N-H bonds generally found 
in proteins: amide (i), imidazole (ii), and amino (-NH2). Metal 

i ii 
ions have been reported to induce both amide1 and imidazole2 

proton ionizations which are often accompanied by concomi­
tant stereochemical changes about the metal ion; e.g., the 
nickel(II) complex of the triglycine undergoes a change from 
octahedral to square-planar geometry upon amide proton 
ionization10 and the bis(histidinato)cobalt(II) chelate is re­
ported to undergo transformation from an octahedral to tet-
rahedral environment upon imidazole proton ionization. We 
now wish to report the first case of stereochemical changes 
induced in cobalt(II) chelates upon amino proton ionization 
in aqueous solution near the physiological pH range. We chose 
to study the colbalt(II) complexes of tridentate bis(2,2'-pyri-
dylmethyl)amine (DPA) (I)3 and bidentate 2-aminomethyl-
pyridine (AMP) (II)4 because of possible charge stabilization 
due to dispersal from the ionized amino group through the 
metal ion into the pyridine rings via "d"-x* orbital interac­
tions.5 

I II 

Potentiometric formation curves of 1:1, DPA-3HC1 to co-
balt(II), solutions have an inflection at a = 3, moles of base per 
mole of ligand, indicating the formation of [Co(DPA)-
(H20)32+].6 At pH 8.5, a second buffer zone with slow equi­
librium times (up to 15 min/titration point) is found, indicating 
that a reaction other than that of a simple deprotonation 
(usually quite fast) is occurring. The color of the solution turns 
from pink to deep blue as the deprotonation reaction occurs, 
indicating a change in cobalt(II) stereochemistry.7^10 Com­
puter treatment of the titration data indicate that there are two 
proton ionizations in the second buffer region.11 Infrared 
spectra (KBr disk) of the isolated blue compound,-
[Co(H_iDPA)OH]-3H2012 indicated the lack of a N-H 
band. Upon recrystallization from MeOH, the infrared spec­
trum (KBr disk) of [Co(H-]DPA)OH] (III) contained no 
N-H band and a sharp strong band at 3640 cm-1, indicating 
a nonhydrogen-bonded OH group.13'14 The conductivity of III 
(9.7 X 1O-4 M) in CH3NO2 was measured to be 5.4 ft cm2/ 
mol,15 and the molecular weight of III obtained by vapor 
pressure osmometry in MeOH was determined as 265 ± 5. The 
above indicate that III is a nonionic monomeric metal complex. 
This together with infrared and visible spectral data supports 
the formulation of III as [Co(H-, DPA)OH]. DPA was found 
not to undergo amine proton ionization in the presence of Zn2+, 
Ni2+, or Cu2+. 

Potentiometric formation curves of 1:1 and 2:1, A'-meth-
ylbis(2,2'-pyridylmethyl)amine (MeDPA) to cobalt(II), so­
lutions have an inflection at a = 3, indicating the formation 
of [Co(MeDPA)(H2O)3

2+] and [Co(MeDPA)2
2+], respec­

tively.16 In both systems, the color of the solutions remained 
pink above pH 10, the equilibria times above pH 8 were fast, 
and there was no near basic buffer zone as in the Co:DPA 
formation curves. The above indicates that the replacement 
of the amino hydrogen in DPA by a methyl group drastically 
alters the solution chemistry of Co2+; i.e., there is no proton 
ionization in the near basic pH range and there appears to be 
no change in the stereochemistry of Co2+. The above further 
supports the ionization of the amino proton in [Co(DPA)-
(H2O)3

2+]. 
Potentiometric formation curves of 2:1, AMP-2HC1 to co-

balt(II), solutions had an inflection at a = 2, indicating the 
formation of [Co(AMP)2(H2O)2

2+], followed by a second 
buffer zone similar in nature (long equilibrium times) to that 
of the 1:1, Co2+-DPA, system.'7 Again two protons were lib­
erated in the second buffer zone as the solution turned deep 
blue, indicating the formation of [Co(H-] AMP)2].18 It is in­
teresting to note that Co(DPA)2+ with two pyridyl donors per 
amine undergoes deprotonation at a lower pH value (0.3 unit) 
than does Co(AMP)2

2+ with only one pyridyl residue/amine 
nitrogen. This suggests that the aromatic ring possibly acts as 
an electron density sink for the deprotonated amine, where 
charge is dispersed through the "d" orbitals of the metal into 
the 7r*-antibonding orbitals of the pyridine rings. This would 
also explain why similar amine deprotonation reactions have 
not been reported in diethylenetriamine or other polyalk-
ylenepolyamine complexes OfCo2+. 

The biological consequences of the above are possibly great. 
Deprotonation reactions observed in the metal ion binding of 
peptides and proteins, often thought to be due to the ionization 
of peptide protons, could in some cases be due to amino proton 
ionization. [Co(DPA)(H2O)3

2+] begins to deprotonate at pH 
8.5, a pH value similar to that at which bis(glycylglycinato)-
cobalt(II) starts to undergo amide proton ionization.19 The 
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consequences of amino vs. amide proton ionization arise not 
only in the resultant stereochemistry of the metal ion,1 b'c but 
also the conformation of the peptide. X-ray studies20 have 
shown that deprotonated peptide groups usually contain planar 

O 

IL 
-CHRCNCHR'-

i i i 

iii moieties. Deprotonated amine groups, on the other hand, 
may not require any great change in peptide conformation. 
Considering the relatively low pH value at which [Co(DPA)-
(H20)32+] undergoes amine deprotonation, care probably 
should be exercised now in the assignment of metal ion induced 
deprotonation reaction in metal-peptide and -protein systems 
to amide proton ionization. 
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Interception of a Triplet Biradical by Paramagnetic 
Species. Enhancement of a Photocycloaddition 

Sir: 

The intervention of triplet 1,4 biradicals has long been 
suggested in Norrish II fragmentations1 and [2 + 2] photo­
cycloaddition reactions.2-4 Evidence for their intermediacy in 
cycloadditions derives largely from the observation of virtually 
complete stereorandomization in photoproduct under condi­
tions where reactants maintain stereochemical integrity.3'4 

There have been several observations of interception of bira­
dicals.5-15 Wagner6 has estimated a lifetime of 300 ns for a 1,4 
triplet biradical in the Norrish II reaction from an elegant 
intramolecular trapping experiment, and Scaiano12 has directly 
determined the lifetime of a related biradical as 97 ± 15 ns in 
methanol13 and 42 ns in benzene.14 O'Neal has estimated a 
longer lifetime in the vapor phase.7 We here report the inter­
ception of a 1,4-biradical intermediate in a [2 + 2] photocy­
cloaddition. Di-to7-butyl nitroxide (N) and molecular oxygen 
interact efficiently with the 1,4 biradical and enhance its col­
lapse to cyclobutanes. 

The benzophenone (B) photosensitized reaction of phen-
anthrene (P) with dimethyl fumarate (F) affords the stere­
oisomer^ cyclobutanes (T) and (C) and dimethyl maleate 
(M).16'17 The mechanism is thought to involve a triplet exci-

I Q l ^CO2CH3 ( Q l yP0,CH:i 

[ Q J 't»2CH3 [ ( Q ] T O 2 C H , 

T C 

CM 
J T - T - C O 2 C H 3 

A J ^ ICHCO2CH3 

SS 

plex, 3(P—F), subsequent collapse of which to a biradical (3SS) 
ultimately affords the photoproducts.16'17 For both N and 
oxygen, small increases (5-20%) in the quantum yields for C 
+ T occur on addition of small concentrations (1O-2 M) of 
"quencher", while 4>M decreases. Further increase in [N] 
quenched both reactions owing to the known18 quenching of 
3B and 3P by N. 

We analyze the reaction in the presence of N as shown in 
Scheme I. A similar scheme applies for O2. 

For the first two terms, 03p and </>3ss, all necessary rate 
constants were either known18 from competitive quenching of 
trans- to m-stilbene isomerization or measured by the same 
technique. Concentrations employed minimized the effects of 
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